Recent Advances In the Prevention Of Hypotension During Hemodialysis

May 24, 2019 Sun Woo Kang, MD. PhD. Korea

INJE UNIVERSITY BUSAN PAIK HOSPITAL

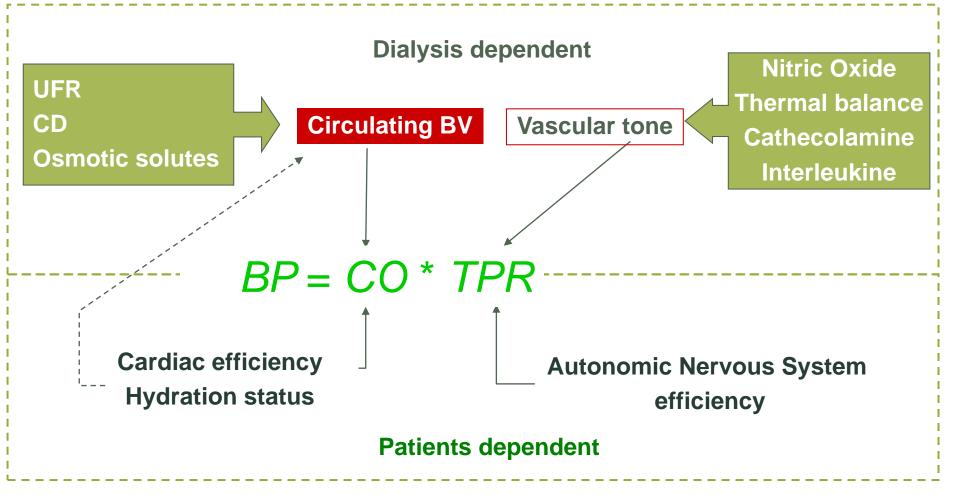
Agenda

- Definition of Intradialytic Hypotension (IDH)
- Pathophysiology of IDH
- Strategies and Maneuvers to Prevent IDH
 - Pharmacological
 - Na and UF profiling
 - BVM and Automatic Biofeedback
 - BTM and Cooling
 - HDF
- Review of major clinical studies
- Conclusion

Intra-dialytic hypotension (IDH)

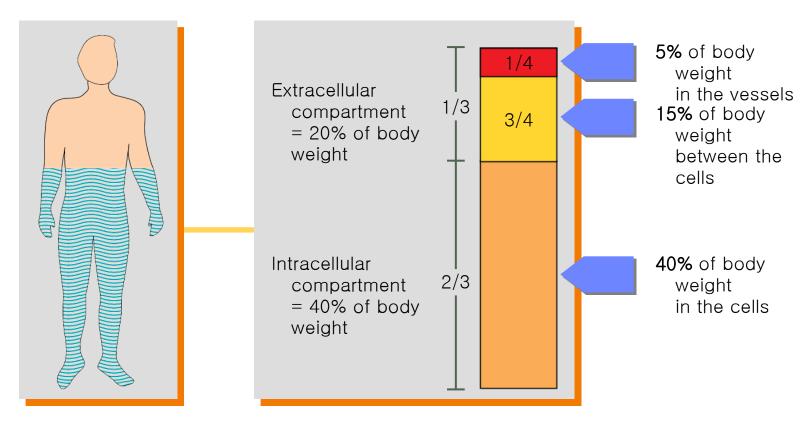
Definition:

Decrease in systolic BP by ≥20 mmHg or decrease in MAP by 10 mmHg in combination with hypotensive symptoms and need for nursing intervention nadir-based IDH, cut-off SBPs of 90 and 100 mmHg

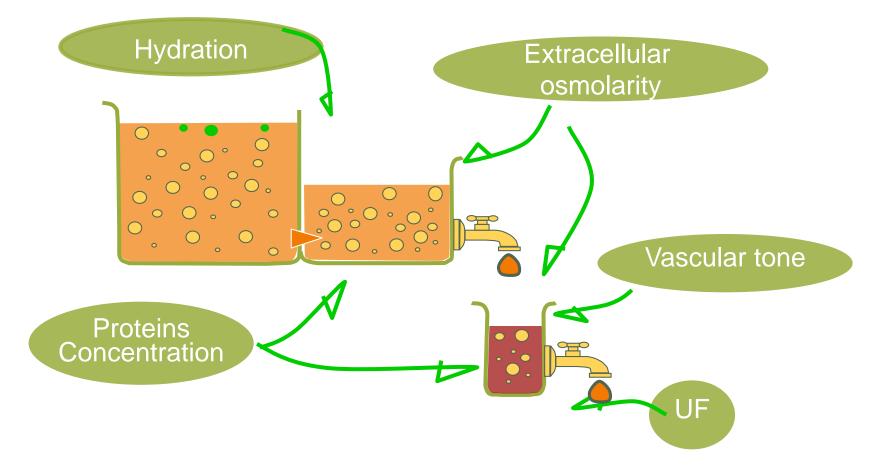

> K/DOQI clinical practice guidelines. *Am J Kidney Dis* 45:Suppl 3:S1, 2005 Kooman J et al., EBPG guideline. *Nephrol Dial Transplant* 22:Suppl 2:ii22, 2007 Flythe JE et al, Association of motality risk with IDH. *J Am Soc Nephrol* 26:724-734, 2015

- One of the most frequent complications of hemodialysis
 - : 20~30% of all hemodialysis sessions

Concerns about IDH


- Symptomatic discomfort
- Chronic fluid overload : HTN and LVH
- Reduced solute clearance
- Myocardial ischemia, Repeated
 - Perfused during diastole
 - Increased mortality

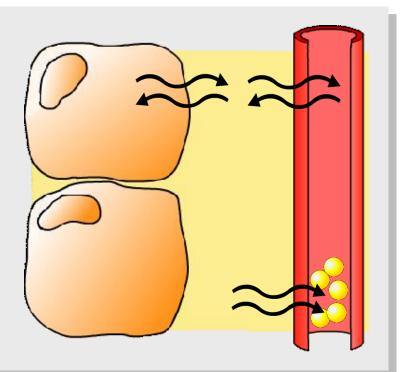
Determinants of Arterial Pressure during hemodialysis



Fluid removal during dialysis

Volume distribution

Factors affecting plasma refilling rate during dialysis



Principles of fluid removal

Blood volume change and refilling

Factors affecting refilling:

- Overhydration
- Plasma osmolarity
- Protein concentration
- UF rate
- Patient's refill capability

EBPG guideline on hemodynamic instability

5. Stratified approach to prevent IDH

First-line approach

- Dietary counseling (sodium restriction).
- Refraining form food intake during dialysis.
- Clinical reassessment of dry weight.
- Use of bicarbonate as dialysis buffer.
- Use of a dialysis temperature of 36.5°C.
- Check dosing and timing of antihypertensive agents.

Second-line approach

- Try objective methods to assess dry weight.
- Perform cardiac evaluation.
- Gradual reduction of dialysate temperature from 36.5° downward (lowest 35°C) or isothermic treatment (possible alternative: convective treatments).
- Consider individualized blood volume controlled feedback.
- Prolong dialysis time and/or increase dialysis frequency.

Pharmacological Maneuvers for IDH

- Midodrine
 - •10mg, single oral dose 5-30min before HD
 - •Safe and effective, but variable results
- Arginine vasopressin
 - •A relative AVP deficiency during HD
 - Continuous IV infusion or Intranasal DDAVP
- Adenosine A1 receptor antagonists

Technical Maneuvers for IDH

- Objective assessment of dry weight : BCM[®], S10[®]
- Handling dialysis treatment time, dialysis frequency & Ultrafiltration rate
- Sodium profiling & UF profiling
- Cold dialysate
- Blood volume monitoring
- Using biofeedback technology : Hemocontrol[®] / BTM[®] to control blood volume reduction during dialysis

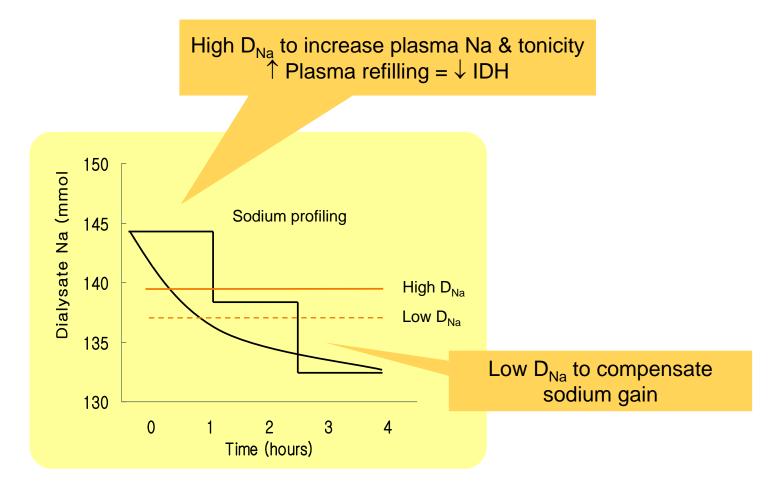
Bioimpedance Spectroscopy (BIS)

Outer electrodes (red): Apply electrical current

Inner electrodes (blue): Measure voltage

Impedance =
$$\frac{\text{voltage}}{\text{current}}$$

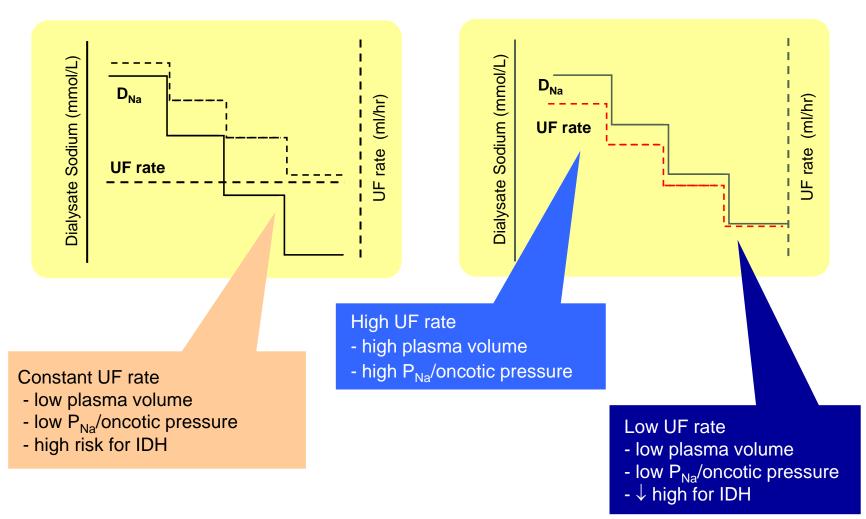
Effect of BIS-guided volume assessment on IDH

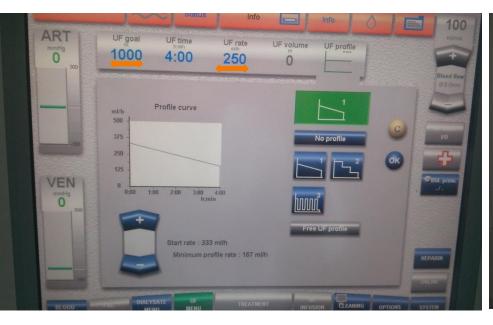

- IDH was more common among patients with hypovolemia assessed by M-BIA.
 M-BIA readily identified patients where
 IDH could be prevented by increasing dry
 Weight. Kalainy S et al. Can J Kidney Health Dis 2015; 2
- The frequency of IDH was not decreased despite the use of M-BIA in conjunction with adjustment of UFR. Hur E et al. Am J Kidney Dis 2013; 61

Dialysis treatment time, dialysis frequency and UFR

- Limit Interdialytic weight gain (IDWG) : ≥ 3kg or ≥ 3% of estimated dry weight occurs more frequently among patients with IDH.
 - Counsel patient regarding salt intake and habitual drinking
 - Prevent hyperglycemia in diabetes
 - Utilize diuretics at high doses in patients with residual renal function
- Some experts recommend that when prescribing dialysis time, it is important to consider that the maximum UFR should not exceed 10 mL/kg/h
- More frequent or longer treatments that allow for lower UFR likely lessens the risk of IDH, but may result in more frequent episodes of IDH, if total ultrafiltration exceeds the target, if the target weight is underestimated.

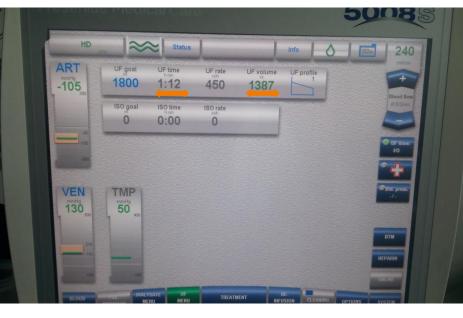
Sodium Profiling Hemodialysis


- Time-dependent profile of high ~ low D_{Na}
 - : period to maintain plasma tonicity ~ to compensate Na load



SPHD + UF Profiles is Essential

SPHD with constant UF


SPHD with UF profiles

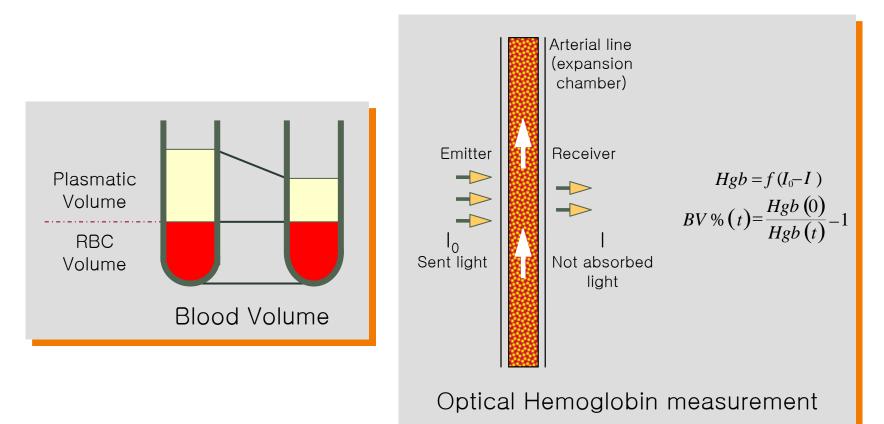
Problem of SPHD: Sodium Load

Dialysate sodium up to 138~140 mEg/L

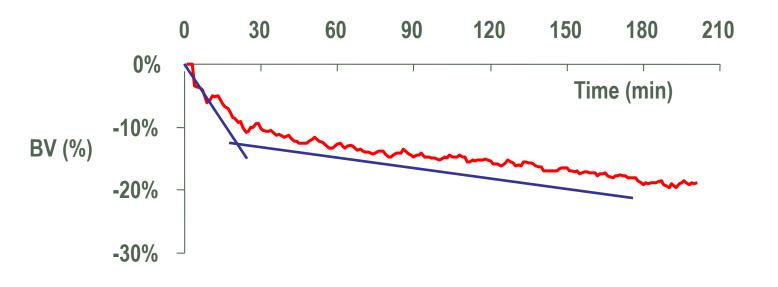
Diffusive Sodium Gain Interdialytic Intradialytic period period ↑Cx d/t sodium gain ↓IDH & its related morbidities (thirst, weight gain, Hypertension)

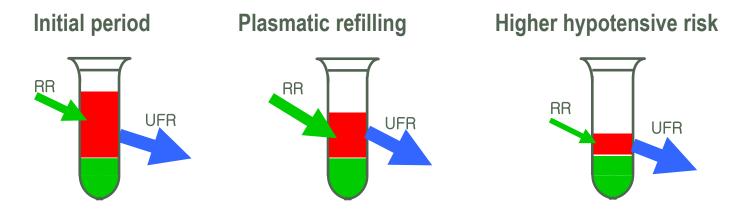
Just shifting the time of dialysis discomforts ?

		$ \begin{array}{c} 150 \\ z \\ 145 \\ \frac{9}{0} \\ \frac{9}{2} \\ \frac{9}{2} \\ 140 \\ 135 \\ 130 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 150 \\ z \\ 145 \\ 0 \\ 130 \\ 130 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$ \begin{array}{c} 150 \\ \hline z & 145 \\ \hline \\ \hline$	$\begin{bmatrix} 150 \\ 2 \\ 9 \\ 0 \\ 140 \\ 135 \\ 130 \\ 0 \\ 0 \\ 1 \\ 130 \\ 0 \\ 0 \\ 1 \\ 1 \\ 100 \\ 0 \\ 1 \\ 1 \\ 1 $
Na balance			Positive	Neutral	N eutral
		Convention	S tep-down	S tep-down	Alternating
Ultrafiltration profile	-	Control	PS	NS	NA
			IDH↓, Na gain ↑	No effect	No effect
	+	U	PS+U	NS+U	NA+U
		No effect	IDH↓, Na gain ↑	IDH↓, Na gain ↓	IDH↓, Na gain ↓

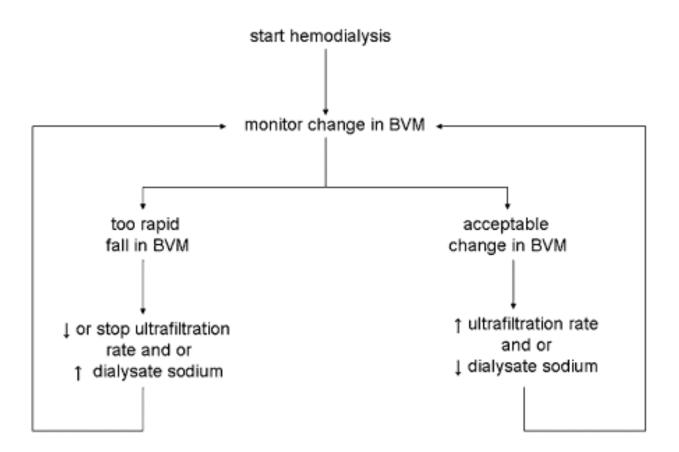

Conclusions)

1) Na balance positive SPHDs is effective but result in Na gain

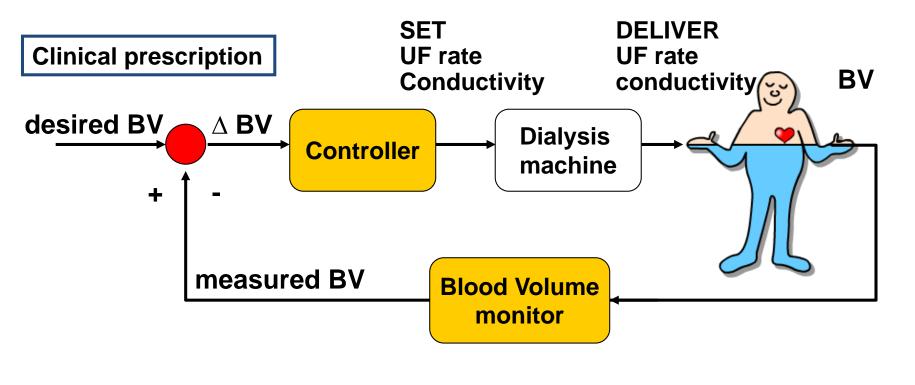

2) Na balance neutral SPHDs is effective without Na gain


if UFP is combined

Principle of Blood Volume Monitor (BVM)

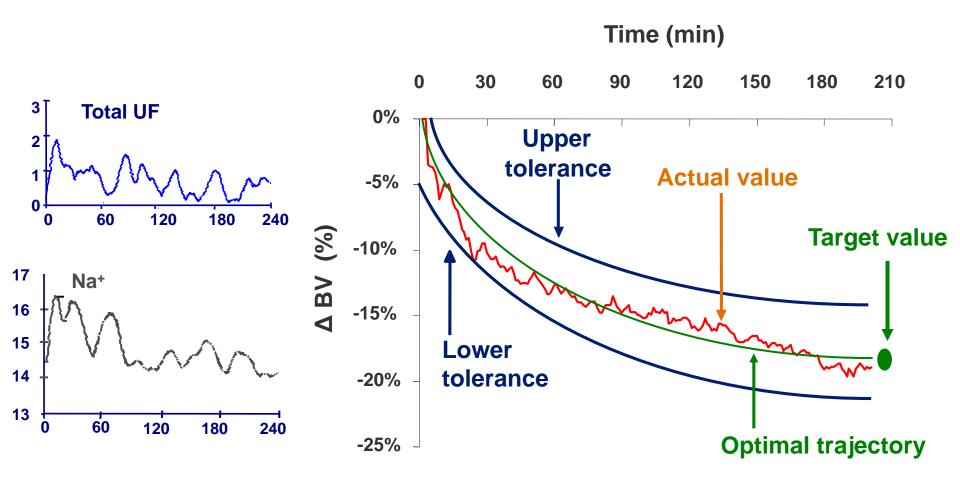


Changes in blood volume during hemodialysis

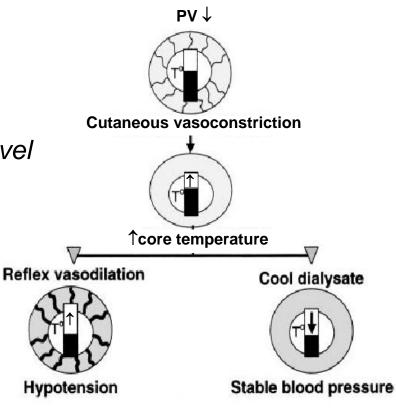


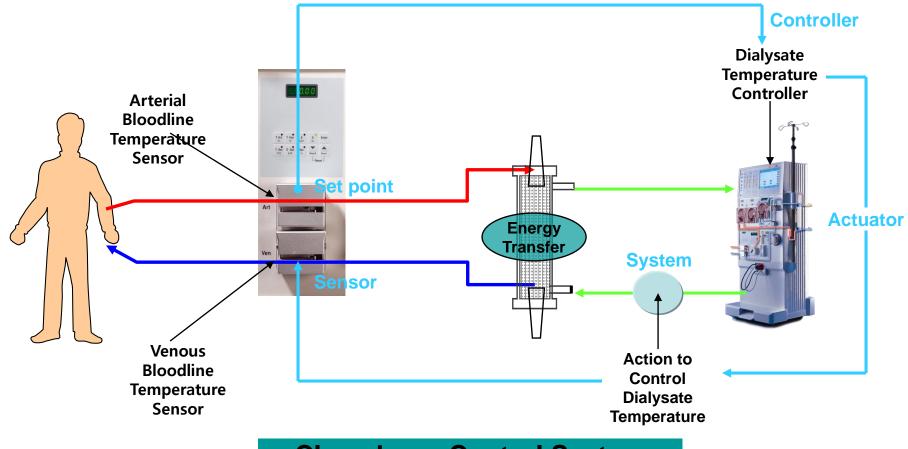
"Fuzzy" logic control system for regulating changes in relative blood volume (BVM).

Hemodialysis International 2011 Oct ; 15 : S37-S42


Automated blood volume regulation during hemodialysis (Biofeedback)

measuring + automated actions

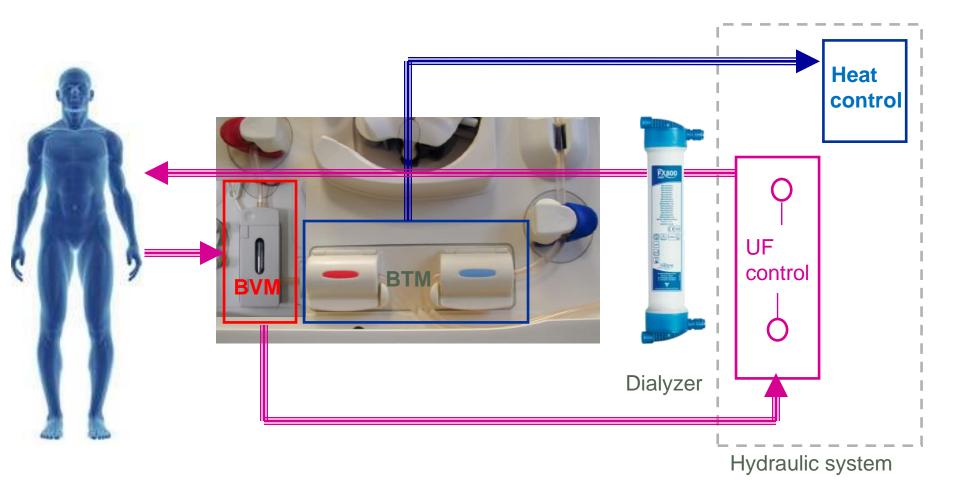

Leading blood volume along the optimal trajectory



Cold Dialysate

- ↓Plasma volume
 - \rightarrow cutaneous vasoconstriction
 - \rightarrow \uparrow core temperature (impaired thermal balance)
 - \rightarrow peripheral vasodilatation *in critical level* \rightarrow IDH
- 36.5 ~ 38 °C → 35~35.5°C : ↓ IDH

Blood Temperature Monitor (BTM)


Close-Loop Control System

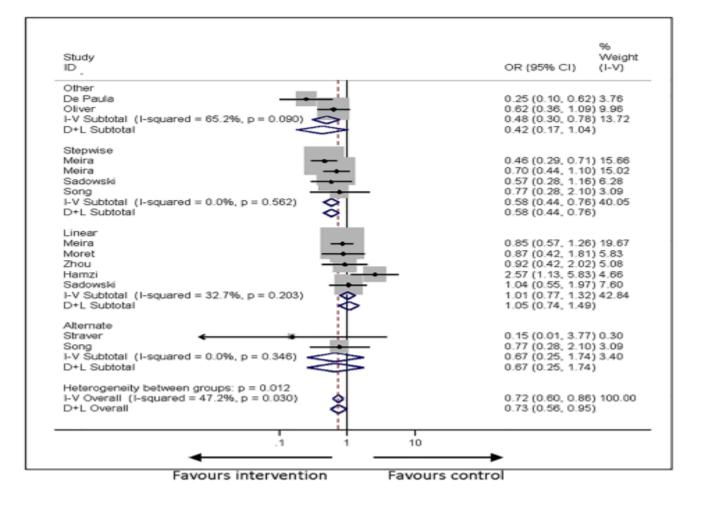
BTM & BVM in feedback loop

Landmark-Reports of Each Maneuver (profiling HD)

•IDH prone patients (NDT, 2006)

- •Control: 25% (16/64) IDH
- •Na profile (LD) : 23% (15/65) IDH
- •UF profile (LD) : 31% (19/61) IDH
- •Na + UF profile (LD) : 10%% (7/73) IDH

•IDH prone patients (JASN, 2005)


%	Control	PS	PS+U	NS+U	NA+U
Intradialytic discomfort	51.5	21.2	24.2	24.2	30.3
Interdialytic discomfort	18.2	45.5	36.4	15.2	21.2

•A meta-analysis of sodium profiling techniques (Hemo Int, 2017)

•Stepwise profiling was more effective than other profiling methods

•Linear profiling had no evidence to be any more effective than conventional HD

A meta-analysis of sodium profiling techniques and the impact on intradialytic hypotension

Hemodialysis International

2017; 21:312-322 DOI: 10.1111/hdi.12488

Landmark-Reports of Each Maneuver (Hemocontrol[®] or BTM[®])

•IDH prone patients (*KI*, 2002) : Hemocontrol[®] HD

Conventional HD vs BVC HD : 30% reduction of IDH in BVC HD

•IDH prone patients (*NDT*, 2006) : Hemocontrol[®] HD

•Symptomatic IDH : 8% BVC feedback, 16% standard HD, 14% Na profile HD, 17% DC-controlled feedback

•IDH prone patients (*Plos One*, 2015) : Hemocontrol[®] HD

2-fold increase in plasma AVP at 30 minutes into biofeedback session

•IDH prone patients (*AJKD*, 2002) : Isothermic feedback

•Conventional HD vs Isothermic HD : 50% reduction of IDH in Isothermic HD

•2 RCT (*CJASN*, 2015) ; Programmed cooling to 0.5°C below BT

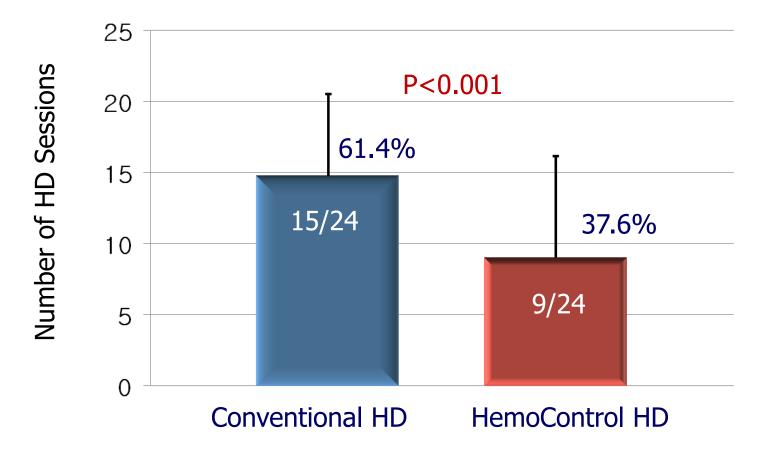
•1 year use can reduce the progression of cardiomyopathy and protect against ischemic brain damage

Clinical benefits in dialysis patients

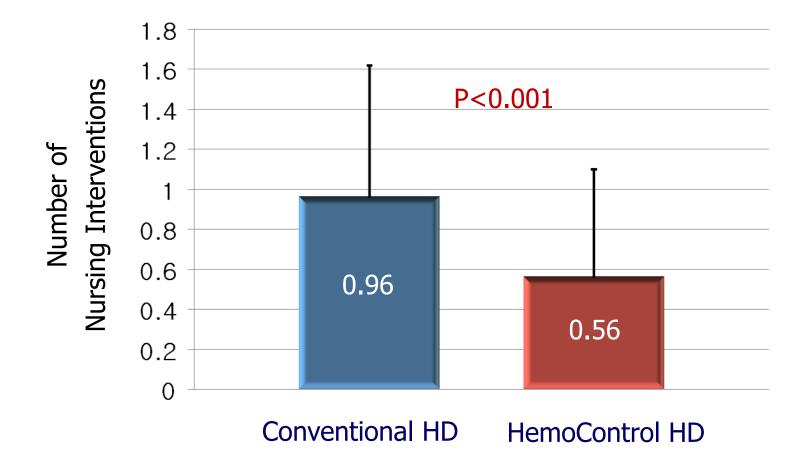
JKMS

http://dx.doi.org/10.3346/jkms.2014.29.6.805 • J Korean Med Sci 2014; 29: 805-810

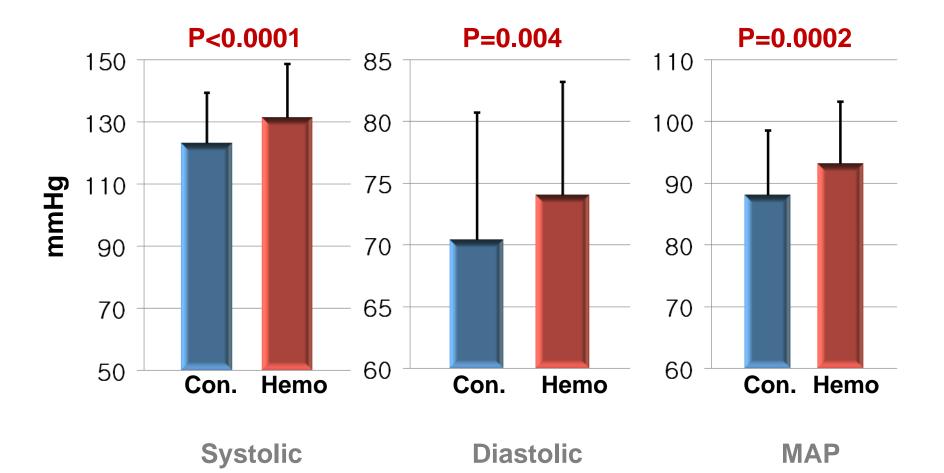
Efficacy of Hemocontrol Biofeedback System in Intradialytic Hypotension-Prone Hemodialysis Patients

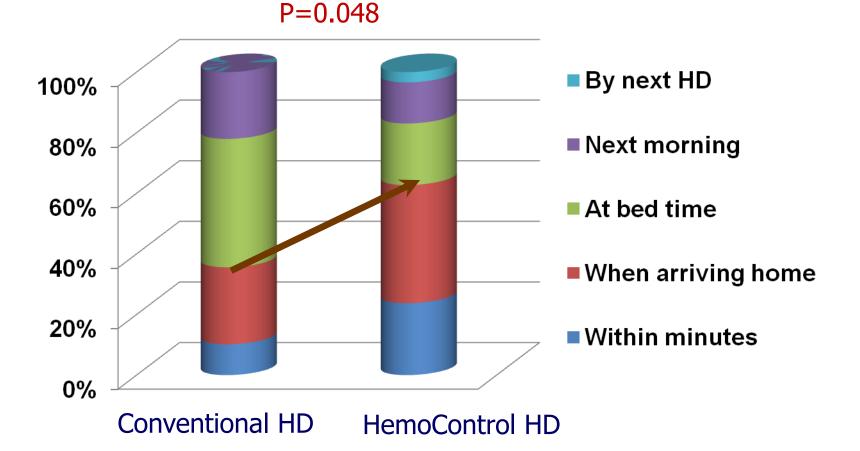

Hyo-Wook Gil,¹ Kitae Bang,² So Young Lee,³ Byoung Geun Han,⁴ Jin Kuk Kim,⁵ Young Ok Kim,⁶ Ho Cheol Song,⁷ Young Joo Kwon,⁸ and Yong-Soo Kim⁹

Department of Internal Medicine, ¹Soonchunhyang University Cheonan Hospital, Cheonan; ²Eulji University School of Medicine, Daejeon; ³Eulji University School of Medicine, Seoul; ⁴Yonsei University Wonju College of Medicine, Wonju; ⁵Soonchunhyang University Bucheon Hospital, Bucheon; ⁶The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Uijeongbu; ⁷The Catholic University of Korea, Bucheon St. Mary's Hospital, Bucheon; ⁸Korea University Guro Hospital, Seoul; ⁹The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea


Received: 23 October 2013 Accepted: 31 March 2014 We conducted a study to determine whether the hemocontrol biofeedback system (HBS) can improve intradialytic hypotension (IDH) in hypotension-prone hemodialysis (HD) patients compared with conventional HD. In this multicenter prospective crossover study, 60 hypotension-prone patients were serially treated by conventional HD for 8 weeks (period A), by HD with hemoscan blood volume monitoring for 2 weeks (period B0), and by HBS HD for 8 weeks (period B1). The number of sessions complicated by symptomatic IDH during 24 HD sessions (14.9 ± 5.8 sessions, 62.1% in period A vs 9.2 ± 7.2 sessions, 38.4% in period B1, P < 0.001) and the number of IDH-related nursing interventions in a session (0.96 \pm 0.66 in period A vs 0.56 \pm 0.54 in period B1, P< 0.001) significantly decreased in period B1 than in period A. Recovery time from fatigue after dialysis was significantly shorter in period B1 than in period A. The patients with higher post-dialysis blood pressure, lower difference between pre- and post-dialysis blood pressure, less frequent IDH, and higher pre- and post-dialysis body weight in period A responded better to HBS in period B1 in regard to the reduction of IDH. In conclusion, HBS may improve the patient tolerability to HD by reducing the IDH frequency and promoting faster recovery from fatique after dialysis.

Keywords: Hypotension; Renal Dialysis; Clinical Trial; Dialysis Volume


Number of sessions IDH occurred during 24 sessions


Number of nursing interventions per session

Post-dialysis BP

Recovery of Fatigue After Dialysis

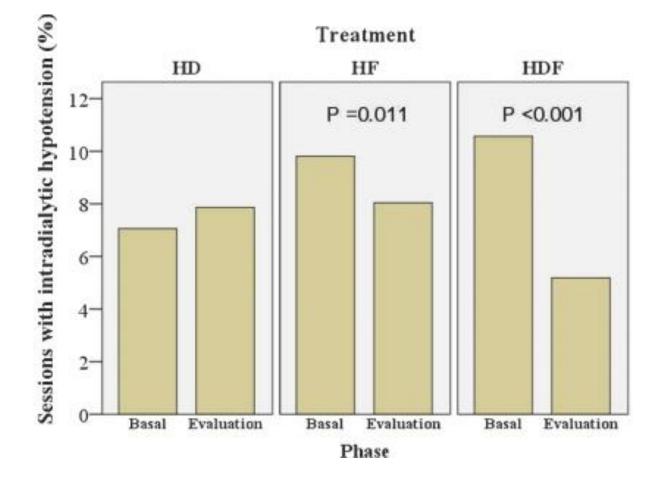
(a) Biofeedback HD versus conventional HD with constant dialysate conductivity and ultrafiltration rate; outcome: IDH. Relative treatment effect estimate (rate ratio).

$\langle \alpha \rangle$					Rate Ratio	Rate Ratio		
(a)	Study or Subgroup	log[Rate Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
	3.1.1 Parallel trials							
	Deziel 2007	-0.521	0.341	25.7%	0.59 [0.30, 1.16]			
	Nesrallah 2008	-0.547	0.446	15.0%	0.58 [0.24, 1.39]			
	Subtotal (95% CI)			40.7%	0.59 [0.35, 1.00]			
	Heterogeneity: $Tau^2 =$	= 0.00; Chi ² = 0.00). df = 1	1 (P = 0.9)	(6): $I^2 = 0\%$			
	Test for overall effect							
	3.1.2 Crossover trial	s						
	Begin 2002	-0.311	0.431	16.1%	0.73 [0.31, 1.71]			
	Gabrielli 2009	-0.223	0.559	9.6%	0.80 [0.27, 2.39]			
	Santoro 2002	-0.355	0.549	9.9%	0.70 [0.24, 2.06]			
	Selby 2006	-0.693	0.354	23.8%	0.50 [0.25, 1.00]			
	Subtotal (95% CI)			59.3%	0.63 [0.41, 0.98]			
	Heterogeneity: Tau ² = 0.00; Chi ² = 0.77, df = 3 (P = 0.86); $l^2 = 0\%$							
	Test for overall effect: $Z = 2.04 (P = 0.04)$							
	Total (95% CI)			100.0%	0.61 [0.44, 0.86]			
	Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.81$, df = 5 (P = 0.98); $I^2 = 0\%$							
	Test for overall effect:		0.2 0.5 1 2 5					
			Favours biofeedback HD Favours conventional HD					
	Test for subgroup dif	terences: $Chi^2 = 0$.04, df	= 1 (P = 0)	$(1.84), 1^{2} = 0\%$			

					Risk Difference	Risk Difference
(b)	Study or Subgroup	Risk Difference	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
	3.2.1 Parallel trials					
	Deziel 2007	-0.13	0.02	45.8%	-0.13 [-0.17, -0.09]	*
	Nesrallah 2008	-0.08	0.02		-0.08 [-0.12, -0.04]	*
	Subtotal (95% CI)			91.5%	-0.10 [-0.15, -0.06]	•
	Heterogeneity: Tau ² =	= 0.00; Chi ² = 3.13	, df =	1 (P = 0.0)	08); $I^2 = 68\%$	
	Test for overall effect	Z = 4.20 (P < 0.0)	001)			
	3.2.2 Crossover trial					
	Begin 2002	-0.19	0.24	0.3%	-0.19 [-0.66, 0.28]	· · · · · · · · · · · · · · · · · · ·
	Gabrielli 2009	-0.08	0.08	2.9%	-0.08 [-0.24, 0.08]	
	Santoro 2002	-0.1	0.06	5.1%	-0.10 [-0.22, 0.02]	
	Selby 2006	-0.3	0.28		-0.30 [-0.85, 0.25]	
	Subtotal (95% CI)			8.5%	-0.10 [-0.19, -0.01]	•
	Heterogeneity: Tau ² =	= 0.00; Chi ² = 0.71	, df =			
	Test for overall effect	Z = 2.20 (P = 0.0)	3)			
	Total (95% CI)			100.0%	-0.10 [-0.13, -0.08]	•
	Heterogeneity: Tau ² =	-0.00 Chi ² -3.84	df –			
	Test for overall effect			-0.5 -0.25 0 0.25 0.5		
	Test for subgroup dif		Favours biofeedback HD Favours conventional HD			
	rest for subgroup an	referices. Chr = 0.0				

Gihad E. Nesrallah et al. *Nephrol. Dial. Transplant*. 2013;28:182-191

Effect of low temperature dialysis on intradialytic hypotension. 95% CI, 95% confidence interval; BTM, biofeedback temperature monitoring.


		Cool Dialysis	Standard Dialysis			
Source	Intervention	n/N	n/N		Rate Ratio (95% CI)	
Ayoub 2004	Fixed 35 C	0 / 30	0 / 30	1.00 [0.02, 50.40]	H	-
Beerenhout 2004a	BTM 35.2 C	0 / 12	0 / 12	1.00 [0.02, 50.40]	•	4
Chesterton 2009	Fixed 35 C	1/9	2/9	0.50 [0.05, 5.51]	H	
Cruz 1999	Fixed 35.5 C	6 / 99	29 / 99	0.21 [0.09, 0.50]	⊢∎→	
Dheenan 2001	Fixed 35 C	0.375 / 30	0.937 / 30	0.40 [0.01, 17.66]	⊢	
Jost 1993	Fixed 35 C	0 / 12	18 / 12	0.03 [0.01, 0.45] 🛏		
Kaufman 1998	BTM 35.7 C	5 / 15	10 / 15	0.50 [0.17, 1.46]	⊢ ∎ ¦1	
Selby 2006	Fixed 35 C	1/9	1/9	1.00 [0.06, 15.99]	F	
van der Sande 1999	Fixed 35.5 C	0/9	1/9	0.33 [0.01, 8.18]		
van der Sande 2009	BTM 0.5C below body temperature	1 / 21	3 / 21	0.33 [0.03, 3.20]	F	
Yu 1995	Fixed 35 C	0 / 18	0 / 18	1.00 [0.02, 50.40]	H	4
Total				0.32 [0.18, 0.56]	•	
Test for heterogeneity f	for pooled Rate Ratio: Chi ² = 6.35, df =			_		
					0.01 1 10 Favors Cool Dialysis Favors Standard Dia	100 alysis

Reem A. Mustafa et al. CJASN 2016;11:442-457

©2016 by American Society of Nephrology

Hemofiltration and Hemodiafiltration Reduce Intradialytic Hypotension in ESRD (RCT)

Locatelli et al, JASN 2010 Oct; Vol 21

Take Home Messages

- All these developments have not been able to totally abolish hypotension
- Unlikely any single successful treatment option exists, but rather an integrated, multidisciplinary approach may need : Biofeedback technologic combination (Hemocontrol[®] plus BTM[®])
- To create an individual patient dialysis profile may prove more successful
- Attention needs to reduce interdialytic weight gains, so reducing UF requirements : technology can not alone compensate for excessive weight gains
- Ultimately, these maneuvers need to demonstrate a mortality and morbidity benefit